**Geotechnical Society of Edmonton Annual Student Presentations** 

# Landslide hazard assessment, Town of Peace River, AB

Focusing on the landslide movements and their behaviors

September 30, 2009

### **Tai-Hoon KIM**

**University of Alberta** 

Supervised by Drs. C. D. Martin and D. M. Cruden



Development of a Geohazard Assessment Methodology for the Town of Peace River, Alberta





### **Research Objective**

Identify the landslide prone area

 Identify the landslide prone area by;
Landslide hazard assessment

Based on

## Historic landslide information



### <u>Contents</u>

### Landslides in the Peace River area

- Site description
- Previous work
- Landslide case studies
- Lab tests
- Movement characteristics
- Future works
  - Susceptibility and hazard assessment

## **Site description**







#### Physical appearances

- West bank
  - Slope length: 4,000m, flat (2.5-7.5°)
  - Misery mountain (10-13°)
  - Upland: much flatter (-1°)
- East bank
  - Much steeper (6-14°)
  - Transportation routes traverse steep ravines of the Heart River and Pat's Creek







### Geological features

| Bedrock formations                   | Buried channels  |  |
|--------------------------------------|------------------|--|
| Glaciolacustrine, Glacial overburden | Terrace deposits |  |

```
Morgan et al., 2008
```



#### Landslides history

- Geologically immature valleys
- Accelerated since 1970s.



### **Previous work**

### Hardy and Associates (Nov., 1978)

- Identify the areas which slope stability plays a major role when they are developed
- Sources for the study: Contour maps, aerial photographs, published reports etc.
- Used physiographic units

#### Letters

| A | Upland plateau                                   | К | Scarp and toe of slope rapid failure (unstable) |
|---|--------------------------------------------------|---|-------------------------------------------------|
| В | Large slide mass                                 | М | Scarp and toe of slope rapid failure (stable)   |
| С | Slumped bank                                     | N | Smaller islands                                 |
| D | Upper terrace                                    | P | Toe of shallow slides                           |
| E | Major slides blocked the original channel course | Q | Severe shallow slides                           |
| F | Recent terraces and Islands                      | R | Deep seated landslides                          |
| C | Large hill (Misery Mt.)                          | S | Slopes in tributaries                           |
| Н | Abandoned channel course                         | Т | Upper level terraces                            |
| J | Transition (terrace to upslope)                  | U | Old slumped areas                               |

#### **Roman numerals**

| r. | Unaffected by any slope failure                                             |
|----|-----------------------------------------------------------------------------|
| r. | Areas of old landslides                                                     |
|    | Areas which are stable, but would<br>be unstable when they are<br>developed |
| 2  | Presently unstable                                                          |



## Landslide case studies









**To Peace River** 

103st.

- <u>Mile 46.5</u>
- 1978 (Tension crack)
- 1980 (Landslide)
- Railway realignments in 1966, 77, 80

Proposed Residential development was suspended

Translational block slide at the transition zone between bedrock and buried materials

Residential development area

NAR track

Peace River

• <u>99/101st</u>

- Instability started in 1973
- First major problem: 1985
- House removed: 1990-1991
- Recent movement started in 1992 and accelerated in 1993
- Large scaled remediation established since 1993

### 99/101<sup>st</sup> (1:2,000)

### <u>99/101<sup>st</sup> (Cont'd)</u>



<u>Shop slide</u>

• Initial vertical offset across the road pavement occurred (1985, 1986)

• Deep seated translational block slides at clay till-like colluviums



#### Movements vs. precipitations and ground water level



Mile 47.8



#### Movements vs. precipitation and ground water (cont'd)



#### Shop slide



#### Total movements



#### Rupture surface elevations



#### • Soil profile on the rupture surface



### Lab tests

- Identify geotechnical properties of landslide materials
- Focusing on approximate rupture surfaces
  - East bank: 330.05 / 338.16 / 370.11 masl <u>Bedrock</u>
  - West bank: 364.93 / 386.07 masl Colluvial sediments
- Sampling borehole elevation
  - AGS (2008)
  - West bank: 445.30-320.33 masl
    - PR08-03
    - East bank: 538.35-361.40 masl
      - PR08-05







### Plasticity chart



- Direct shear test
  - Sample descriptions



| Diamicton     | Colluvial sediments                      | Samples F and E |  |
|---------------|------------------------------------------|-----------------|--|
|               | Glacial sediments                        | Sample A        |  |
| Silt and Clay | Advance phase glaciolacustrine sediments | sample B        |  |





Direct shear test (Cont'd)

– Diamicton





Direct shear test (Cont'd)
– Silt and Clay



#### Sample B

Advance phase glaciolacustrine sediments

**Formed Slickensides** 



### Direct shear test (Cont'd)

Comparisons with previous values

| Till          | Peak    |       | Fully softened |         | Residual |           |  |
|---------------|---------|-------|----------------|---------|----------|-----------|--|
|               | C (kPa) | Φ(°)  | C (kPa)        | Φ(°)    | C (kPa)  | Φ(°)      |  |
| Sharma (1970) | 0       | 26-32 | 5.5            | 20-22   | 0        | 20        |  |
| Ruel (1985)   | 3-20    | 28-32 | -              | -       | -        | -         |  |
| Present study | 67.5    | 28.1  | 0              | 22.2-26 | 0        | 19.4-23.9 |  |
|               |         |       |                |         |          |           |  |
| Clay          | Peak    |       | Fully softened |         | Residual |           |  |

| Clay          |          |       |         |      |         |       |  |  |
|---------------|----------|-------|---------|------|---------|-------|--|--|
|               | C (kPa)  | Φ(°)  | C (kPa) | Φ(°) | C (kPa) | Ф (°) |  |  |
| Sharma (1970) | 6.9-18.6 | 20-30 | 24.2    | 17   | 0       | 10    |  |  |
| Ruel (1985)   | 33       | 18    | -       | -    | 5       | 9     |  |  |
| Present study | 0        | 18    | -       | -    | 0       | 7.6   |  |  |

### **Movement characteristics**

#### Movement pattern of landslides

- Velocity-time method (Λ-t approach)
  - "Failures in landslide are preceded by an accelerating trend"
- Saito (1988), Voight (1988, 1989), Petley (2004)
- 2 different patterns (in Λ-t space) during the accelerating phases
  - Linear: Brittle movement dominated  $\rightarrow$  First time failure (Crack growth)
  - Asymptotic: Ductile movement dominated  $\rightarrow$  Reactivation
- Offers the possibility for determining the type of deformation



## **Movement characteristics (Cont'd)**



### **Movement characteristics (Cont'd)**

#### Movement pattern (99/101st-End of 99st)











### **Susceptibility and hazard assessment**



### <u>Acknowledgements</u>

- Professors Martin and Cruden (University of Alberta)
- Corey Froese and James Morgan (Alberta Geological Survey)
- Natural Sciences and Engineering Research Council of Canada

### Thank you for your attention!